Pengertian transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.
cara kerja semikonduktor
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor,
misalkan sebuah gelas berisi air murni. Jika sepasang konduktor
dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen),
tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan
(charge carriers). Sehingga, air murni dianggap sebagai isolator.
Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan
mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion)
terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun
tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik,
dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup
kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik
akan memberikan elektron
bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini
karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon
hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan
(oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon
tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang
bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron
untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3
elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan
"lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata
letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling
tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa
muatan ini akan terdistribusi secara merata di dalam materi
semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode
junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor
tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini
cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara
semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang
berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan
konduktivitas dari materi semikonduktor, asalkan tata-letak kristal
silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah
terminal emiter memiliki jumlah doping yang lebih besar dibandingkan
dengan terminal basis. Rasio perbandingan antara doping emiter dan
basis adalah satu dari banyak faktor yang menentukan sifat penguatan
arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat
kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci
dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa
muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom.
Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan
harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan
ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya.
Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam
beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu
pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan
mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible
(tidak bisa dimampatkan), seperti fluida. Sedangkan dalam
semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan.
Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan
metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa
muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar
adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi
daerah depletion zone. Depletion zone ini terbentuk karena transistor
tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan
di antara basis dan emiter. Walau transistor terlihat seperti dibentuk
oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa
dibuat dengan menyambungkan dua diode. Untuk membuat transistor,
bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan
sebuah daerah basis yang sangat tipis.
cara kerja transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya
menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk
membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu
daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu
jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET).
Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit
dengan depletion zone di kedua sisinya (dibandingkan dengan transistor
bipolar dimana daerah Basis memotong arah arus listrik utama). Dan
ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan
tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi
tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang
lebih lanjut.
macam2 transistor
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
- Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
- Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
- Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
- Polaritas: NPN atau N-channel, PNP atau P-channel
- Maximum kapasitas daya: Low Power, Medium Power, High Power
- Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
- Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lainhttp://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/BJT_symbol_PNP.svg/510px-BJT_symbol_PNP.svg.png
by wikipedia
0 komentar:
Posting Komentar